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Characteristics of Multiconductor, Asymmetric,
Slow-Wave Microstrip Transmission Lines

TSUNG-CHENG MU, HIROYO OGAWA, MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Abstract — Spectral-domain technique has been applied to analyze multi-
conductor, asymmetric, slow-wave microstrip lines. It is observed that 1)
the coupled slow-wave microstrip line on a two-layer substrate may have
substantially different propagation constants for even and odd modes and
2) the slow-wave factor of an odd mode of coupled microstrip lines on a

three-layer substrate may be equal to or larger than that of an even mode

under appropriate conditions. This presents the flexibility to realize a large
variety of passive components, such as directional couplers, phase shifters,
and attenuators.

I. INTRODUCTION

LANAR SLOW-WAVE structures based on semicon-
ductor substrates are currently of great technical inter-
est. The first reason is that, with a growing interest in very
high-speed digital integrated circuits, a thorough knowl-
edge of the properties of various planar transmission lines
on semiconductor substrates is essential in order to take
full advantage of the inherent speed capability of the
devices [1]. Second, the slow-wave phenomena have shown
a potential to reduce the dimension of distributed compo-
nents substantially so that the realization of novel in-
tegrated circuits for microwave frequency can be expected.
A number of analytical studies have been reported on
several kinds of planar slow-wave structures [2]~[7]. Sim-
plified parallel-plate structures were first examined [2], [3],
and other studies based on a hybrid-mode approach have
shown the applicability of several techniques to the analy-
sis of MIS microstrip lines, MIS coplanar waveguides [5],
[6]. However, no theoretical results based on a full-wave
analysis have been reported on multiconductor, asymmet-
ric, slow-wave transmission lines except the coupled micro-
strip lines on two-layer substrates [7]. These structures are
expected to realize a wide variety of passive components
such as directional couplers, phase shifters, and attenua-
tors, and to have a large impact on monolithic microwave
integrated circuits.

The purpose of this paper is to present a detailed

analysis of multiconductor, asymmetric, slow-wave micro-
strip lines based on the spectral-domain technique [8].
Some interesting characteristics about two-layer and
three-layer substrates have been discovered. The results are
compared with the experimental and theoretical data [4] in

Manuscript received March 17, 1986; revised May 16, 1986. This work
was supported by U.S. Army Research Office Contract DAAG29-84-K-
0076.

The authors are with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712.

IEEE Log Number 8610562.

wl S w2 S2 W3 53 W4

INSULATCR 23 D3
SEMICONDUCTOR p 2 D2
v
el DI .
SEMI-INSULATOR X

Fig. 1. Cross-sectional view of multiconductor asymmetric slow-wave

microstrip lines.

the limiting case where the spacing between coupled mi-
crostrip lines becomes infinity.

II. SPECTRAL-DOMAIN METHOD

The structure in Fig. 1 can model the slow-wave struc-
ture of MIS configuration as well as of the Schottky
contact type. In the present case, the doped. region of a
semiconductor substrate is treated as a dielectric layer with
finite resistivity, which is included in the analysis by the
complex permittivity for the layer. The reason why we can
apply the present model to a Schottky structure is that
most of the field lines are concentrated under and between
strip conductors, and the field far away from the strip
conductors has very little effect on propagation character-
istics.

A simple method for formulating the dyadic Green’s
function in the spectral domain based on the transverse
equivalent transmission line is adopted to two-layer and
three-layer substrates. The following set of coupled equa-
tions are obtained with the same formulation process as in

[8]:
ZOD(e, B) (o) + Z(a, B) T @) = E(a) 1)
Z2(e, B)J(@) + Z{)(a, B) (o) = E,(a)
where Z(), Z0, Z0), and Z{!) are the Green’s impedance
functions; i denotes the number of layers; and J,, J, E._,
and E_ are the Fourier transform of the z and x compo-
nents of current densities and electric fields, respectively.
Here, a is the Fourier transform-variable and B is an
unknown propagation constant. The closed-form Green’s
functions are derived in the Appendix for two (i = 2) and
three (i = 3) layers.

The solution is then found by means of Galerkin’s
method in the spectral domain, where the current densities
J, and J, are expanded in terms of complete sets of known
basis functions [5]. After taking the Fourier transform of
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(a) Slow-wave factor of coupled slow-wave microstrip lines (symmetric two-conductors) for two-layer substrates. (b)

Attenuation constant of coupled slow-wave microstrip lines for two-layer substrates. (¢) Real part of the characteristic
impedance of coupled slow-wave microstrip lines for two-layer substrates. (d) Imaginary part of the characteristic impedance

of coupled slow-wave microstrip lines for two-layer substrates.

these expressions, they are substituted into (1). Then the
inner products of the resultant equations with each of the
basis functions are formed. The homogeneous linear
simultaneous equations are obtained and the right-hand
side becomes identically zero by the inner product process.
By equating the determinant of simultaneous equations to
zero, the eigenvalue B is obtained.

The definition of characteristic impedance is based on
the power transported along the planar lines and is written
as follows [9]:

ffE X H* zdxdy
I-1*

Z= (2)

where I, is the total current in the z direction and Z is the

z-directed unit vector. This definition can apply even if
more than two strips or asymmetric cases are presented in
the problem.

111
A. Two-Layer Structure

NUMERICAL RESULTS AND DISCUSSION

The characteristics of the symmetric two-strip configura-
tion are first calculated with the analytical procedures
described above. Fig. 2 shows the frequency dependence of
the slow-wave factor, attenuation constants, and character-
istic impedances for two different values of strip spacing in
two-layer structures. The experimental results by Hasegawa
et al. [4] are included for comparison. When the spacing
between the coupled microstrip lines becomes infinity,
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Fig. 3. (a) Slow-wave factor of coupled microstrip lines for two-layer substrates versus resistivity. (b) Attenuation constant
of coupled microstrip lines for two-layer substrates versus resistivity. (c) Real part of characteristic impedance of coupled
microstrip lines for two-layer substrates versus resistivity. (d) Imaginary part of characteristic impedance of coupled

microstrip lines for two-layer substrates versus resistivity.

both even- and odd-mode propagation constants approach
the value of the single microstrip line.

From Fig. 2, it is noticed that the slow-wave factors,
attenuation constants, and characteristic impedances are
substantially different from those of the uncoupled line. In
the even mode, more field lines pass through the conduc-
tive layer than in the single microstrip line. In the odd
mode, a much smaller part of the field passes through this
layer because a substantial portion of the field lines con-
nects the two strips. Therefore, the slow-wave factor for
the even mode is very different from that-for the odd
mode.

Fig. 3 shows the propagation characteristics as a func-
tion of the substrate resistivity of the doped region, which

are similar to those predicted for MIS microstrip line [10].
There are basically three operating regions: the slow-wave
region, the skin-effect region, and the lossy-dielectric re-
gion. Both the slow-wave factor and the characteristic
impedance in the slow-wave region are almost constant
and optimum resistivity exists for the slow-wave propa-
gation.

The present program can also handle asymmetric situa-
tions. Fig. 4 shows the propagation characteristics of two-
strip, asymmetric, slow-wave microstrip lines. Although
the propagation constant changes by only 10 percent, the
real part of the characteristic impedance changes by more
than 50 percent. This characteristic can be applied to
adjust the impedance level of the circuit.
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Fig. 4. (a) Slow-wave factor of coupled asymmetric slow-wave micro-
strip lines (two conductors) for two-layer substrates. (b) Real part of the
charactenstic impedance of coupled asymmetric slow-wave microstrip
lines for two-layer substrates. Z,) and Z,, are the characteristic imped-
ances of C mode and Z,; and Z,, that of # mode.

B. Three-Layer Structure

Since the three-layer substrate is similar to the cross
section of a GaAs MESFET, it is more practical and
important to study the characteristics of such a structure.
A very interesting phenomenon about the slow-wave factor
has been found in this structure. Under some conditions,
the slow-wave factor of the odd mode is larger than that of
the even mode. In the conventional coupled microstrip
lines, as well as in the coupled slow-wave microstrip lines
on two-layer substrates [7], the propagation constant of the
even mode is always larger than that of the odd mode
because of the field distribution [11].

This new phenomenon can be explained in Fig. 5. Fig.
5(a) shows the slow-wave factor versus resistivity. Fig. 5(b)
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Fig. 5. (a) Slow-wave factor of coupled slow-wave microstrip lines
(symmetric two conductors) for three-layer substrates versus resistivity.
(b) Slow-wave factor of coupled slow-wave microstrip lines for three-
layer substrates versus d1.

shows the slow-wave factor for different values of thick-
ness of semi-insulating layers. When the resistivity is high,
corresponding to lossless coupled microstrip lines, the
propagation constant of the even mode is larger than that
of the odd mode. However, when the resistivity becomes
smaller, the slow-wave factor of the odd mode increases
more than that of the even mode in the three-layer struc-
ture. The origin of this particular characteristic comes
from the energy transfer across the interface between the
lossy layer and insulating layer. In the even mode, the
electric field tends to penetrate into the whole substrate.
However, the lossy layer in the three-layer structure is
usually very thin. The major portion of electric energy will
be stored in both thin insulating and thick semi-insulating
layers. In contrast to this, most of the electric energy is
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(a) Slow-wave factor of coupled slow-wave microstrip lines for three-layer substrates. (b) Attenuation constant of

coupled slow-wave microstrip lines for three-layer substrates. (c) Real part of the characteristic impedance of coupled
slow-wave microstrip lines for three-layer substrates. (d) Imagmary part of characteristic impedance of coupled slow-wave

microstrip lines for three-layer substrates.

stored in the thin insulating layer in the two-layer struc-
ture. In the odd mode, the electric field is concentrated
between two strips. Therefore, the major part of the elec-
tric energy will be stored in the thin insulating layer and
the slow-wave factor can be increased by the energy trans-
fer between the thin insulating layer and the lossy layer.
The slow-wave factor of the odd mode becomes greater
than that of the even mode.

Two intersection points can be seen in Fig. 5(b). When
the semi-insulating layer become very thin, corresponding
to the two-layer structure, the slow-wave factor of the even
mode becomes larger than that of the odd mode. On the
other hand, when the semi-insulating layer becomes thick
enough, the propagation constant of the odd mode will be

smaller than ‘that of the even mode, as in conventional
coupled microstrip lines. Fig. 5 shows a useful feature of
coupled slow-wave microstrip lines. The directional cou-
pler with the same propagation constant of even and odd
modes can be realized with parameters corresponding to
these intersection points.

At the fixed resistivity of 0.01 £-cm, the three-layer
structure is studied by varying the frequency. Fig. 6 shows
the numerical results of slow-wave factors, attenuation
constants, and characteristic impedances for two different
values of spacing versus frequency on three-layer sub-
strates. It is observed that the slow-wave factor of the odd
mode is larger than that of the even mode for most of the
frequency range.
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Finally, the behavior of the propagation characteristics
for a three-conductor and a four-conductor on three-layer
substrates is also investigated. The calculated results for
symmetric three-conductor and four-conductor configura-
tions are shown in Figs. 7 and 8§, respectively. The symbols
+ and — are used to indicate the direction of J,. The
meaning of + + is that the amplitude of the conductor is
substantially larger than that of +. The relationship be-
tween — — and — is the same. As in the coupled slow-wave
microstrip-line structures, the all-positive potential situa-
tion has the lowest propagation constant among all the
fundamental modes.

IV. CoNcLUSIONS

The characteristics of multiconductor, asymmetric,
slow-wave microstrips have been investigated thoroughly
with the spectral-domain technique. Characteristics of these
structures have been studied for different values of struc-
tural parameters such as thickness and resistivity of the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 12, DECEMBER 1986

doped semiconductor layer. The results obtained are as
follows.

1) The coupled slow-wave microstrip line (symmetric
two conductors) on two-layer substrate has a substantially
different slow-wave factor for even and odd modes.

2) In a two-strip, asymmetric, slow-wave microstrip line
on two-layer substrate, the characteristic impedance can be
adjusted significantly with only a small variation of the
slow-wave factor.

3) The coupled slow-wave microstrip line (symmetric
two conductors) on a three-layer substrate has the unique
characteristic that the slow-wave factor of the odd mode
can be equal to or larger than that of the even mode.

4) In the symmetric three- or four-conductor slow-wave
microstrip line, the all-positive potential mode has the
lowest propagation constant among all the fundamental
modes.

5) Since the slow-wave microstrip lines described here
have structure similar to that of GaAs MESFET, they may
be advantageously used in realizing physically small pas-
sive components such as directional couplers and phase
shifters for MMIC.

APPENDIX

According to the transverse resonance method, the fol-
lowing Green’s impedance functions are obtained:

2 ol
A2 = Ze + Zh Al
zz ((X,B) a2+B2 a2+B2 ( )
5() — 50 B s s
sz ([X,B)—sz (a,ﬁ)=—a_2—+—182(z -Z ) (Az)
a2 ,82
7 ) = Zei 4 7hy
(. B) o+ B2 a2+,822 (A3)

A. Two-Layer Structure (j=2)

o Yovacothy,d, + Yoy, tanhy,d
. 1 ™2 24y T™M3 3d3
(Z 2) =Yrma+ Vrms

Y13 + Youpcothy, d, tanh y,d,
(A4)

Yig,cothy,d, + Yo, tanhy,d,
Yrgs + Yog,cothy,d, tanhy,d,

shoy —1
(th) =Yrps + Yrgs

(A5)
Yoo J@EE, characteristic admittance for
™y TM mode in ith region,
R characteristic admittance for
B Gepy” TE mode in ith region,

propagation constant in the y

2_ 2 2 2'
Y=ot BT e ks, direction in the ith region.
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B. Three-Layer Structure (j=3)
5,5 TMZ(YTMl cothy,d; + Yy, tanhy,d,)
(Z) ' = =Yrma + Y
Youes Yoz + Yy cothy, d; tanhy,d, )
' + Y tanh y;ds ( Yoygp + Yo cothy,d, tanhy,d, ) (A6)
+ Yupp tanh y;d; (Y cothy,dy + Yoy, tany, d, )
(Z~h3) Y 4T Y1p2(Yrg cothy,d; + Yo, tanhy,d, )
T4 T ¥y
®? Yups (Y1p, + Yog cothy;d; tanh Y2d,)
) + Y1g; tanhysd, ( Y1gs + Y cothy,d; tanh dez) (A7)
+ Yrg, tanhy,d; (Yo, cothy, d; + Yog, tanhy,d, )
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